### **Transcriptome Annotation**

- Why annotate?
- Assign some biological identity/meaning/function to assembled transcripts

- How do we get this information?
- Look for sequence similarity of our transcripts with known genes in other orgs.

- Can we just use a closely related organism's genome, if it is available?
- Not necessarily....

# Databases: UniProtKB, UniRef

#### Databases for annotation

- well-curated & maintained
- info from many species



#### - UniprotKB/UniRef

- Manually curated protein sequences + automated translations of genomes
- UniRef90: sequences sharing 90% sequence similarity are clustered into a single entry (contains isoforms, homologs, etc)
- Other data: biological/molecular function, domains, expression, PPIs

### Databases: OrthoDB

#### OrthoDB

- catalog of protein-coding orthologs = genes in extant species arising from a single gene in a last common ancestor
- delineates orthologs at each major radiation along species phylogeny
- Other info: gene universality, duplicability, evolutionary rate, gene architecture

| UNIVERSITÉ Zdobnov's Computational Evolutionary Genomics group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIB                                               |                    | Login          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|----------------|
| OrthoDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Build your query                                  | Search by sequence |                |
| The Hierarchical Catalog of Orthologs V9.1<br>OrthoDB is a comprehensive catalog of orthologs, i.e. genes inherited by extant species from their last common<br>ancestor. Arising from a single ancestral gene, orthologs form the cornerstone for comparative studies and allow<br>for the generation of hypotheses about the inheritance of gene functions. Each phylogenetic clade or subclade of<br>species has a distinct common ancestor, making the concept of orthology inherently hierarchical. From its<br>conception, OrthoDB explicitly addressed this hierarchy by delineating orthologs at each major species radiation<br>of the species phylogeny. The more closely related the species, the more finely-resolved the gene orthologies. | Phyloprofile:<br>[No filtering]<br>[No filtering] | ¢                  | ~?             |
| Read more or cite<br>"OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial<br>and viral orthologs."<br>Zdobnov EM et al, NAR, Nov 2016, <u>PMID:27899580</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Species to display                                | ¢:                 | ?<br>Clear all |



## Databases: **PFAM** and **RFAM**

- PFAM
  - catalog of protein families and **domains** (functional regions)
  - use <u>HMMER</u> to search against PFAM-A databases
  - HMMER uses Hidden Markov Model (HMM) approach to make more accurate predictions of remote homology than BLAST
- RFAM
  - Catalog of RNA families, mostly non-coding RNA genes
  - Uses covariance models to infer homology based on both sequence and secondary structure

Eddy 2004 "What is a hidden Markov Model?" Finn et al 2016 Nawrocki et al 2016



